
Detecting anomalies in medical data using

Generative Adversarial Networks

Justin Glibert

April 24, 2019

Contents

1 Background 1
1.1 EEG, IED, and how to approach the problem. 1
1.2 GANs . 3

2 The Model 8

3 Experiments 13
3.1 WGAN . 13

3.1.1 WGAN. No Squash. z ∈ R32 14
3.1.2 WGAN. No Squash. z ∈ R16 16
3.1.3 WGAN. Squash. z ∈ R32 18
3.1.4 WGAN. Squash. z ∈ R16 20

3.2 Encoder . 21
3.2.1 Encoder. No Squash. z ∈ R32 22
3.2.2 Encoder. No Squash. z ∈ R16 24
3.2.3 Encoder. Squash. z ∈ R32 25
3.2.4 Encoder. Squash. z ∈ R16 27

3.3 LSTM-FCN . 28

4 Conclusion 29

Bibliography 30

1

Abstract

The research group led by Prof Justin Dauwels here at NTU is currently
working on classifying electroencephalogram recordings as coming from nor-
mal or epileptic patients. They gathered a large amount of annotated data
and built a system which achieves close to 90% accuracy at detecting those
patients. The dataset they use has been annotated at two different lev-
els: The entire recordings are labeled as coming from normal or epileptic
patients, and individual anomalies in those recordings have been manually
identified by clinicians. Collecting the second level of annotation, the indi-
vidual anomalies, was an expensive and time consuming process. Qualified
doctors have to spend hours selecting those anomalies on a computer and
it is clear that getting more of those individual annotations is a bottleneck
when it comes to making the system they developed more robust by collect-
ing more data.

The focus of my research has been on building a system with similar
accuracy without using the annotated anomalies, just the entire recordings.
Succeeding in doing so means that you can scale the system by collecting
more data from hospitals (They already know which EEG recordings are
coming from epileptic patients) without clinicians to annotate individual
recordings.

Clinicians diagnose patients as epileptic by doing pattern matching while
watching a live EEG. [1] They are often looking for interictal epileptiform
discharge (IED). Those are the aforementioned individual annotated anoma-
lies.

I investigate using Generative Adversarial Networks [2] to build an unsu-
pervised anomaly detection model and then use the anomaly score of short
time windows to classify recordings as coming from an epileptic or normal
patient.

Chapter 1

Background

1.1 EEG, IED, and how to approach the problem.

In this section I will briefly describe what an EEG is, how it relates to
diagnosing epileptic patients, what IEDs are, and how you can approach
the problem of classifying patients as being epileptic or not from an EEG
recording.

The human electroencephalogram (EEG) was discovered by the German
psychiatrist, Hans Berger, in 1929. It plays a central role in diagnosis of
patients with epilepsy while usually being a non invasive procedure. An
EEG is carried out by laying down electrodes on the scalp and measuring
voltage fluctuations. When discretising the recording, it can be considered
as Time serie.

Time series: A time series is a series of data points indexed (or listed
or graphed) in time order. Most commonly, a time series is a sequence
taken at successive equally spaced points in time. Thus it is a sequence
of discrete-time data. Examples of time series are heights of ocean tides,
counts of sunspots, and the daily closing value of the Dow Jones Industrial
Average. [3]

Interictal epileptiform discharge (IED) are often a sign of epilepsy [1]
and detecing IEDs in an EEG recording is the method that [4] and [5] used
to classify recordings as coming from epileptic or normal patients.

1

Figure 1.1: 4 IEDs with different shapes

Detecting epileptic patients from an EEG recording can be seen, from a
machine learning point of view, in a few different ways:

1. As a Time series classification problem where you feed the entire
discretised EEG into a model. There is only one network which is
trained end-to-end.

2. As a Supervised learning problem where you cut the recording into
fixed size windows and then feed all those windows into a model which
can detect IEDs (which was trained using annotated IEDs, thus in a
supervised learning fashion). The number of detected IEDs (and the
confidence score of those classifications) can then be fed into another
model (eg: SVM) to classify the recording as coming from an epileptic
patient or not. The two networks are trained separately.

3. As an Unsupervised learning problem where an anomaly detec-
tion model is trained on fixed size windows of normal patients (ie:
Never give the model any IEDs or other anomalies usually found in
EEG recordings of epileptic patients). To classify entire recordings you
then feed the anomaly scores of every window into a model which can
classify sequences (Time series classification using the anomaly scores)
or extract hand engineered features (eg: the number of windows with
an anomaly score greater than x) and then feed those features into a
more general model (just like the the supervised learning method just
mentioned). The two networks are trained separately.

2

Prof Justin Dauwels and his group followed the second approach while
I investigated the third one. The obvious advantage of the third approach
compared to the second one is not using the individual IEDs annotations
which are expensive and time consuming to collect.

1.2 GANs

A key element in my model is a Wasserstein GAN. In this section I will intro-
duce the vanilla GAN, list some of its flaws, and describe the transition from
the GAN to the WGAN. I assume that the reader of this report is familiar
with basic machine learning terminology and supervised deep learning.

A Generative Adversarial Neural Network [2] is a Deep Neural Network
which has been trained in an adversarial fashion to generate some data in
tensor form. The output of the network can be an image, some text, or even
a fixed length 1D output (which can be interpreted as a fixed length window
from a timer series).

Generative modelling as been an active area of research in machine learn-
ing and a few approaches were popular yet pretty bad (Variational Autoen-
coders [6] is one of those approaches)

Then came the GAN, it fixed the major problem regarding generating
data with a Deep Neural net: The fact that there is not just one ”right an-
swer” and that it is fine to not average over all good answers. The following
figure and explanation coming from [7] is helpful.

3

Figure 1.2: Visualising the GAN loss vs MSE

In this example, a model is trained to predict the next frame in a video sequence. The
video depicts a computer rendering of a moving 3D model of a person’s head. The image
on the left shows an example of an actual frame of video, which the model would ideally
predict. The image in the center shows what happens when the model is trained using
mean squared error between the actual next frame and the model’s predicted next frame.
The model is forced to choose a single answer for what the next frame will look like.
Because there are many possible futures, corresponding to slightly different positions of
the head, the single answer that the model chooses corresponds to an average over many
slightly different images. This causes the ears to practically vanish and the eyes to become
blurry. Using an additional GAN loss, the image on the right is able to understand that
there are many possible outputs, each of which is sharp and recognizable as a realistic,
detailed image. [8]

One of the key innovation of the GAN is the adversarial loss. A GAN
is composed of two networks trained jointly. A generator network maps a
vector of random noise (usually a vector of dimension 100) to some type of
data in tensor form of higher dimension (An image could be of dimension
256∗256=65536). A discriminator network takes batches of inputs composed
of either real data from the dataset that you want the GAN to generate or
outputs of the generator network. The discriminator then has to classify the
generator outputs as ”fake” and the the real data as ”real”. If you represent
the generator network as G(z) where z is a random vector (usually sampled
from an uniform or gaussian distribution) and the discriminator as D(x)
where x is either the output of the generator or an image/sentence/fixed
length window from your dataset, you can write down the GAN objective
as a minimax game with the following loss function:

min
G

max
D

L(D,G) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

= Ex∼pr(x)[logD(x)] + Ex∼pg(x)[log(1−D(x)]

4

Figure 1.3: Diagram of the inner working of a GAN

Figure 1.4: Table describing the pdf used in the loss function of a GAN

Symbol Meaning

pz Data distribution over noise input z
pg The generator’s distribution over data x
pr Data distribution over real sample x

The vanilla version of GANs actually does not work well. If you use some
tricks that I won’t describe here [9], you can get better results. The main
problem with vanilla GANs however is the loss function. You can show that
the loss function for any generator G and the best possible discriminator D∗

can be rewritten as this:

L(G,D∗) = 2DJS(prpg)− 2 log 2

Where DJS is the Jensen–Shannon Divergence. The JS Divergence is a
distance function between two distributions. You may be familiar with the
KL Divergence, DKL, which is similar to the JS Divergence.

The loss function of the GAN is essentially the distance between the
distribution of the real samples and the generated ones. You want your
network to imitate the real distribution of your data and thus minimise that
distance.

A GAN implementation becomes as good as its distance function (for
Vanilla GAN the distance function was implicit, hidden in the minimax).
The thing is, DJS , the Jensen-Shannon Divergence, is not a good distance
function when used in a Deep Learning context because it has discontinuities.

5

That means that its gradient can be zero or infinity which makes the training
process unstable (and thus why we need to use the tricks listed in [9]). Let
me introduce you a better distance function for probability distribution:
The Wasserstein Distance.

Wikipedia [10]: In mathematics, the Wasserstein or Kantorovich-
Rubinstein metric or distance is a distance function defined be-
tween probability distributions on a given metric space M. Intu-
itively, if each distribution is viewed as a unit amount of ”dirt”
piled on M, the metric is the minimum ”cost” of turning one pile
into the other, which is assumed to be the amount of dirt that
needs to be moved times the mean distance it has to be moved.
Because of this analogy, the metric is known in computer science
as the earth mover’s distance.

The formula for the Wasserstein distance is W (pr, pg) where:

W (pr, pg) = inf
γ∼Π(pr,pg)

E(x,y)∼γ [x− y]

1. Π(pr, pg) is the set of all possible joint probability distributions be-
tween pr (the PDF of the distribution of the real samples in your
dataset) and pg (the PDF of the implicit distribution represented by
the generator network G)

2. One joint distribution γ ∈ Π(pr, pg) describes one journey where dirt
will be transported. Precisely γ(x, y) states the percentage of dirt that
should be transported from point x to y so as to make x follows the
same probability distribution of y.

Now let’s see why this W (pr, pg) distance is better than DJS or even DKL.
Let’s use two simple multivariate distribution as a case study.

∀(x, y) ∈ P, x = 0 and y ∼ U(0, 1)

∀(x, y) ∈ Q, x = θ, 0 ≤ θ ≤ 1 and y ∼ U(0, 1)

6

Figure 1.5: There is no overlap between P and Q when θ ∕= 0

When θ ∕= 0:

DKL(QP) =

x=θ,y∼U(0,1)

1 · log 1

0
= +∞

DJS(P,Q) =
1

2
(

x=0,y∼U(0,1)

1 · log 1

1/2
+

x=0,y∼U(0,1)

1 · log 1

1/2
) = log 2

W (P,Q) = |θ|

When θ = 0, and thus the two distributions are fully overlapped:

DKL(PQ) = DKL(QP) = DJS(P,Q) = 0

W (P,Q) = 0 = |θ|

DKL gives us infinity when two distributions are disjoint. The value of DJS

has sudden discontinuities, not differentiable at θ = 0. Only Wasserstein
metric provides a smooth measure.

That’s precisely why, if you use the Wasserstein distance as your loss
function in the training of a GAN, you get much better results (gradient
descent suffers from discontinuities). The loss becomes:

L(pr, pg) = W (pr, pg) = max
w∈W

Ex∼pr [fw(x)]− Ez∼pr(z)[fw(gθ(z))]

Where fw(x) is essentially the discriminator but coming from a set of K-
Lipschitz continuous functions. Again, I will not go into the details, you can
refer to the WGAN the paper. [11]

We now have all the required building blocks to start describing the
model, I hope you are excited.

7

Chapter 2

The Model

The first thing which should come to your mind is:

How can we detect anomalies with a GAN if GANs are typically used to
generate data (And not do classification or regression)?

The intuition is as follows: GANs can only generate patterns they have
seen before. If the samples in your dataset do not contain anomalies, then
you can be sure that G will not be able to generate any either. You can
then train an Encoder. This idea of Encoder and the izif training proce-
dure that will be described later in this report comes from [12]. Remember
that G takes a vector of random Gaussian noise as its input and use it to
generate new samples (implicitly, what G is doing is mapping N (1, 0) to
the real distribution pr). You can actually go backward and, from a sam-
ple, find a vector z such that G(z) will output something very similar to
the sample. This Encoder network, E, can then be used to detect anoma-
lies. As we mentioned, a GAN cannot generate anomalies if it has never
seen any. Thus if you give an anomaly to E, it will find a vector z. But
if you then feed this vector z into G then the output will be very different
from the anomaly you gave to the encoder. We can define a naive anomaly
score function: A(x) = 1

n·||x−G(E(x))||2where n is the dimension of the input.

Now, how do we train E, and what form does it take? Let’s define the
architecture of D, G, and E. I decided to use the architecture described
in [13] which is now used in most GAN researchs: The Deep Convolutional
GAN.

8

Figure 2.1: The DCGAN architecture for G. The ”Project and Reshape”
is basically a Fully Connected layer and every Conv layer is a Convolution
Transpose. Read [14] for an intuitive explanation of Convolution Transpose.

The architecture for D and E is basically the reverse of the architecture
of G. The final layer of D is a Fully Connected layer with one output
node and a sigmoid as its activation function (traditional setup for binary
classification). The final layer of E is a Fully Connected layer with n outputs
(where n is the dimension of z ∈ Rn) and tanh as its activation function
(We restrict the output of z such that its values cannot be outside one σ of
the distribution used during training, N (1, 0)).

There is another we need to figure out: What is the shape and form of
the data we are going to give to the Generator, Discriminator, and Encoder?
Entire EEG recordings? That will not work because those networks only
accept fixed size input and output. A discretised EEG is basically a multi-
variate time-series. There are c channels (electrodes), each of them having
n measurements or time-steps. The dataset provided by the research group
of Prof Justin Dauwels consists of EEGs sampled at 128hz. Every EEG is
represented by a c∗n matrix where every row represents the entire recording
of one channel.

I decided to cut every channel into windows of size 64 (Thus every win-
dow is a R64 vector) by having a rolling window process go over each channel
(I used a window step size of 32, that means there is a 50% overlap between
adjacent windows). This window size and window step size are equivalent
to the one used in [4] (The main paper published by the research group).

The training process for G, D, and E is as follows:

1. Preprocess the normal patients EEGs by first applying a CAR Mon-

9

tage (subtract the mean of all channels from every channel, it is com-
monly done when dealing with EEGs in neuroscience) and then using
the rolling window process to create a spikefree window dataset.

2. Train a DCGAN [13] modified to use a WGAN loss [11] on the spike-
free window dataset. The dimension of z is an hyperparameter. This
process yields G and D.

3. Train an Encoder E using the izif procedure on the spikefree window
dataset.

A few details about the training procedure of D:
D is basically doing regression, it has to find the best z for a given x

such that the reconstruction error is small. The loss for D is:

Lizif (x) =
1

n
· ||x−G(E(x))||2 + κ

nd
· ||f(x)− f(G(E(x)))||2

As you can see, this is very similar to the naive anomaly function which
was described earlier, with the addition of a second term. The first term in
the sum is the reconstruction loss where D is penalised for the squared
difference between the sample and the reconstructed one. The second term
is the discriminator feature loss. f is actually the output of one of the
last layers of D, and this output is commonly referred as a feature vector.
In Deep Learning, you can actually take a very good model trained on
ImageNet (Like a trained ResNet) and use the output of an intermediate
layer as a feature generator. You can thus train a new model with your own
data by first feeding images into the ablated ResNet and then feeding the
feature vectors into a classifier. This approach works extremely well and
it commonly called ”embedding”. Here we use one layer of D to force the
regenerated sample to have a similar feature vector to the feature vector
of the original sample. This yields better results and more explanations
can be found in [12]. nd is the dimension of the feature vector, κ is an
hyperparameter.

izif: There are two ways to train the encoder. You can sample a vector z
from N (1, 0) and use it to generate some data x using G. You then give this
x to the decoder and measure the difference between the original z and the
output of E. This method is called ziz. izi is simply the training method
we already described but without the second term in the loss. That is you
do not use a discriminator’s feature layer to guide the reconstruction. izif
is the training procedure whose loss has been given earlier (Reconstruction
loss and discriminator feature loss). It led to the best results in [12] and this

10

is the training procedure for E to I decided to use. I want to also mention
that the weights of G and D are frozen during the training of E. We back-
propagate through those two networks but the optimiser does not update
their weights during the izif training procedure.

We now have a model (consisting of G, D, and E) which can compute an
anomaly score for any window of size 64 (a vector x ∈ R64). The anomaly
score function is:

A(x) =
1

n
· ||x−G(E(x))||2 + 1

nd
· ||f(x)− f(G(E(x)))||2

The last moving part which needs to be described is a model which can
classify processed recordings. Processed recordings are complete EEG
recordings cut into windows where each window’s anomaly score is computed
using G, D, and E. A processed recording is represented by a c ∗ a matrix
where each row of the matrix is the anomaly score of every window in the
channel (a < n as every window’s anomaly score is just one real number).
The windows are generated using the same rolling window process used to
generate the spikefree window dataset.

A very strong baseline in multivariate time-series classification is the
Multivariate LSTM-FCNs described in this paper: [15]. A trend in time-
series classification has been using Convolutional Layers instead of Recurrent
Networks to classify sequences. This model, the LSTM-FCN, uses both. The
trick is that the LSTM goes through the variables and not through time.
The model transposes the data before feeding it into the LSTM to trick it
into considering the variables as time-steps and the time-steps as variables.
By doing that permutation you let the network learn relationships between
the variables but force the actual processing through time to be done by
CNNs which will be order of magnitudes faster. One of the disadvantage
with this approach is that you need to pad your sequences with zeroes for
them to all have the same length.

11

Figure 2.2: The LSTM-FCN architecture. [15]

We can now describe the second part of our training process:

1. Compute the anomaly score (using the aforementioned formula) of
windows of size 64 and step size 32 in both normal patients EEGs
and epileptic patients EEGs. This yields a new dataset, pro-
cessed recordings. The processed records in this dataset are com-
prised of c ∗ a matrices where every row of each matrix represents the
entire processed recording of one channel (a < n as every window’s
anomaly score is just one real number) of one EEG.

2. Train a LSTM-FCN, L, on the processed recordings dataset. This
is a binary classification setup where L has to classify processed record-
ings into epileptic or normal. Use oversampling to make sure that the
ratio between epileptic and normal processed recordings in every batch
is close to 1 (There are much more recordings of normal patients in
the dataset)

The model has now been completely described. It is time to do some exper-
iments.

12

Chapter 3

Experiments

3.1 WGAN

Let’s now report on the experiments which have been done with the Wasser-
stein GAN. Training this model on CPU would take more than 24 hours
which means I had to find another solution. I thus called Amazon and
asked them to give me access to a p3.2xlarge instance on the Amazon Web
Service EC2 cloud here in Singapore. That instance type gives you access
to an Nvidia V100 GPU which brought the training time down to 5 hours. I
only fiddled with two hyperparameters: The dimension of the z vector and
wether I would ”squash” the dataset and add a tanh activation function on
the last layer of G.

Typically, GANs output are restricted to a range of real numbers. This
makes training much more stable [8] and is a natural thing to do when
you work with images (every pixel value is between 0 and 255, researchers
usually rescale and translate the dataset such that 255 is mapped to 1 and
0 is mapped to -1. They can then add a tanh activation function to the G
and restricts its output to this range).

However, when working with time series data, doing so is a less intu-
itive decision. Anomalies are not only characterised by their shape but
also by their amplitude. I tried ”squashing” every window from the spike-
free window dataset, that is translating and rescaling very window such
that the peak is mapped to 1 and the lowest value is mapped to -1. This
hyperparameter, ”squash”, means that the dataset has been squashed and
an additional tanh activation function has been added to the output of G.
The follow subsections and figures illustrate the training process for every
pair of hyperparameters (dimension of z, squashing).

13

3.1.1 WGAN. No Squash. z ∈ R32

Figure 3.1: Discriminator loss over time

Figure 3.2: Generator loss over time. We can see that it progressively
became better at tricking the discriminator

14

Figure 3.3: Some examples of windows generated by the GAN

(a) Early in the training process (b) Some times later

(c) End of the training process

15

3.1.2 WGAN. No Squash. z ∈ R16

Figure 3.4: Discriminator loss over time

Figure 3.5: Generator loss over time. We can see that it progressively
became better at tricking the discriminator

16

Figure 3.6: Some examples of windows generated by the GAN

(a) Early in the training process (b) Some times later

(c) End of the training process

17

3.1.3 WGAN. Squash. z ∈ R32

Figure 3.7: Discriminator loss over time

Figure 3.8: Generator loss over time

18

Figure 3.9: Some examples of windows generated by the GAN (Squashed as
expected)

(a) Early in the training process (b) Some times later

(c) End of the training process

19

3.1.4 WGAN. Squash. z ∈ R16

Figure 3.10: Discriminator loss over time

Figure 3.11: Generator loss over time

20

Figure 3.12: Some examples of windows generated by the GAN (Squashed
as expected)

(a) Early in the training process (b) Some times later

(c) End of the training process

3.2 Encoder

Similarly, the Encoder was trained on the EC2 instance. I did not vary
any hyperparameter when training the encoder. Training one Encoder for
every combination of the previous hyperparameters, the one chosen for every
WGAN, took a fair amount of time. The only experiment I carried out for
a subset of WGAN was not restricting the output E (z). The researchers of
[12] tried this approach too but finally decided not to drop the regularisation

21

process at the output of the E. That regularisation process amounts to
adding a tanh activation function to the last Fully Connected layer. If you
do that, the values of z cannot be outside one σ of the distribution used
during training, N (1, 0).

When dropping the regularisation, the Encoder could output a vector
z with values that the Generator had never seen before and thus game the
system by using extreme z to generate almost any pattern. This obviously
made the entire Anomaly Detector pattern useless and thus I kept the tanh
function at the output of E.

Once again, The follow subsections and figures illustrate the training
process of the Encoder for every pair of WGAN’s hyperparameter (dimen-
sion of z, squashing) plus a table with some statistics on the Anomaly Score
computed using that pair of WGAN/Encoder on windows from the spike-
free window dataset, windows from the epileptic EEGs recordings, and
windows with IEDs (when want to make sure that IEDs are definitely picked
up as anomalies). These IEDs were obtained using the second level of an-
notation in the research group’s dataset.

3.2.1 Encoder. No Squash. z ∈ R32

Figure 3.13: Encoder loss over time. It converges in less than 1000 steps

22

Figure 3.14: Some examples of windows generated by the GAN. The time
series in blue is the input to E and the red time series is the reconstruction
given by G(E(x)). The histogram is the z vector generated by E.

(a) Early in the training process

(b) Some times later

Table 3.1: Anomaly Detection results

Statistics Spikefree Epileptics IEDs

Mean 53.47 74.66 504.60
Max 1816.24 3216.42 5319.39
Min 20.02 19.32 29.24

Median 43.66 57.88 398.65

23

3.2.2 Encoder. No Squash. z ∈ R16

Figure 3.15: Encoder loss over time. It converges in less than 1000 steps

Figure 3.16: Some examples of windows generated by the GAN. The time
series in blue is the input to E and the red time series is the reconstruction
given by G(E(x)). The histogram is the z vector generated by E.

(a) Early in the training process

(b) Some times later

24

Table 3.2: Anomaly Detection results

Statistics Spikefree Epileptics IEDs

Mean 53.88 79.26 488.24
Max 1617.46 5371.25 4945.40
Min 16.85 12.00 65.29

Median 43.07 58.89 364.61

3.2.3 Encoder. Squash. z ∈ R32

Figure 3.17: Encoder loss over time. It converges in less than 1000 steps

25

Figure 3.18: Some examples of windows generated by the GAN. The time
series in blue is the input to E and the red time series is the reconstruction
given by G(E(x)). The histogram is the z vector generated by E.

(a) Early in the training process

(b) Some times later

Table 3.3: Anomaly Detection results

Statistics Spikefree Epileptics IEDs

Mean 1.14 1.15 1.14
Max 2.15 2.37 2.30
Min 0.41 0.36 0.39

Median 1.13 1.14 1.12

26

3.2.4 Encoder. Squash. z ∈ R16

Figure 3.19: Encoder loss over time. It converges in less than 1000 steps

Figure 3.20: Some examples of windows generated by the GAN. The time
series in blue is the input to E and the red time series is the reconstruction
given by G(E(x)). The histogram is the z vector generated by E.

(a) Early in the training process

(b) Some times later

27

Table 3.4: Anomaly Detection results

Statistics Spikefree Epileptics IEDs

Mean 0.42 0.40 0.40
Max 1.54 1.34 1.42
Min 0.08 0.05 0.08

Median 0.36 0.34 0.35

3.3 LSTM-FCN

Until now, every part of the model has been successful at doing what it was
designed for: The WGAN generates windows which cannot be distinguished
from real ones by a Discriminator network, the Encoder is quite good at
finding z given a window, and the anomaly scores are reasonable (IEDs
have an high anomaly scores while the anomaly scores of windows in spike
free recordings are, in average, ten times lower than the IEDs’ ones).

We first generate the processed recordings dataset using the process
described earlier. The WGAN/Encoder pair we will be using is the one
with hyperparameters z ∈ R32 and no Squash. This pair yielded anomaly
scores with the biggest difference between the median score of IEDs and the
median score of spike free windows.

I did not vary any hyperparamter of the LSTM-FCN (I used the ones in
[15]). I still ran two experiments:

1. Using a processed recordings dataset with recordings coming from
one hospital only (The same hospital used to generate the data in-
volved in the training of the two previous models)

2. Using a processed recordings dataset with recordings coming from
multiple hospitals (And retraining the WGAN + Encoder using win-
dows generated from this new set of data)

Table 3.5: Time series classification using the LSTM-FCN results

Metric One Hospital Multiple Hospitals

Train Accuracy 53% 45%
Validation Accuracy 43% 42%

28

Chapter 4

Conclusion

Detecting anomalies in time series data works, using those anomalies to
classify EEG recordings as coming from epileptic patients does not. The
intuition behind why this did not work is as follows: The anomaly detection
model picks up any kind of anomalies but the one used by physicians to
identity epileptic patients are very specific. A time series classification model
trained on top of those anomaly scores cannot distinguish from ”useful”
anomalies (ie: IEDS) and useless anomalies (ie: The patient moving its
head and provoking electrical noises in the electrodes). It does yields bad
predictions.

29

Bibliography

[1] S. J. M. Smith, “Eeg in the diagnosis, classification, and management
of patients with epilepsy,” Journal of Neurology, Neurosurgery & Psy-
chiatry, vol. 76, no. suppl 2, pp. ii2–ii7, 2005.

[2] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Net-
works,” arXiv e-prints, June 2014.

[3] “Time series - wikipedia.” (Accessed on 04/17/2019).

[4] Y. RAJAMANICKAM, J. Thomas, T. Kluge, and J. Dauwels, “A deep
learning scheme for automatic seizure detection from long-term scalp
eeg,” pp. 368–372, 10 2018.

[5] I. Ullah, M. Hussain, E.-u.-H. Qazi, and H. Aboalsamh, “An Automated
System for Epilepsy Detection using EEG Brain Signals based on Deep
Learning Approach,” arXiv e-prints, Jan. 2018.

[6] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
arXiv e-prints, Dec. 2013.

[7] W. Lotter, G. Kreiman, and D. Cox, “Unsupervised Learning of Visual
Structure using Predictive Generative Networks,” arXiv e-prints, Nov.
2015.

[8] I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Networks,”
arXiv e-prints, Dec. 2017.

[9] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved Techniques for Training GANs,” arXiv e-prints,
June 2016.

[10] “Wasserstein metric - wikipedia.” https://en.wikipedia.org/wiki/

Wasserstein_metric. (Accessed on 04/18/2019).

30

https://en.wikipedia.org/wiki/Wasserstein_metric

[11] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv
e-prints, Jan. 2017.

[12] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-
Erfurth, “f-anogan: Fast unsupervised anomaly detection with gener-
ative adversarial networks,” Medical Image Analysis, vol. 54, pp. 30 –
44, 2019.

[13] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
arXiv e-prints, Nov. 2015.

[14] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv e-prints, Mar. 2016.

[15] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate
LSTM-FCNs for Time Series Classification,” arXiv e-prints, Jan. 2018.

31

